69,942 research outputs found

    Holographic renormalisation group flows and renormalisation from a Wilsonian perspective

    Full text link
    From the Wilsonian point of view, renormalisable theories are understood as submanifolds in theory space emanating from a particular fixed point under renormalisation group evolution. We show how this picture precisely applies to their gravity duals. We investigate the Hamilton-Jacobi equation satisfied by the Wilson action and find the corresponding fixed points and their eigendeformations, which have a diagonal evolution close to the fixed points. The relevant eigendeformations are used to construct renormalised theories. We explore the relation of this formalism with holographic renormalisation. We also discuss different renormalisation schemes and show that the solutions to the gravity equations of motion can be used as renormalised couplings that parametrise the renormalised theories. This provides a transparent connection between holographic renormalisation group flows in the Wilsonian and non-Wilsonian approaches. The general results are illustrated by explicit calculations in an interacting scalar theory in AdS space.Comment: 63 pages. Minor changes and references added. Matches JHEP versio

    Epigenetic modification of the oxytocin receptor gene is associated with emotion processing in the infant brain

    Get PDF
    The neural capacity to discriminate between emotions emerges early in development, though little is known about specific factors that contribute to variability in this vital skill during infancy. In adults, DNA methylation of the oxytocin receptor gene (OXTRm) is an epigenetic modification that is variable, predictive of gene expression, and has been linked to autism spectrum disorder and the neural response to social cues. It is unknown whether OXTRm is variable in infants, and whether it is predictive of early social function. Implementing a developmental neuroimaging epigenetics approach in a large sample of infants (N = 98), we examined whether OXTRm is associated with neural responses to emotional expressions. OXTRm was assessed at 5 months of age. At 7 months of age, infants viewed happy, angry, and fearful faces while functional near-infrared spectroscopy was recorded. We observed that OXTRm shows considerable variability among infants. Critically, infants with higher OXTRm show enhanced responses to anger and fear and attenuated responses to happiness in right inferior frontal cortex, a region implicated in emotion processing through action-perception coupling. Findings support models emphasizing oxytocin's role in modulating neural response to emotion and identify OXTRm as an epigenetic mark contributing to early brain function

    Gamma-ray Novae: Rare or Nearby?

    Full text link
    Classical Novae were revealed as a surprise source of gamma-rays in Fermi LAT observations. During the first 8 years since the LAT was launched, 6 novae in total have been detected to > 5 sigma in gamma-rays, in contrast to the 69 discovered optically in the same period. We attempt to resolve this discrepancy by assuming all novae are gamma-ray emitters, and assigning peak one-day fluxes based on a flat distribution of the known emitters to a simulated population. To determine optical parameters, the spatial distribution and magnitudes of bulge and disc novae in M31 are scaled to the Milky Way, which we approximate as a disc with a 20 kpc radius and elliptical bulge with semi major axis 3 kpc and axis ratios 2:1 in the xy plane. We approximate Galactic reddening using a double exponential disc with vertical and radial scale heights of r_d = 5 kpc and z_d = 0.2 kpc, and demonstrate that even such a rudimentary model can easily reproduce the observed fraction of gamma-ray novae, implying that these apparently rare sources are in fact nearby and not intrinsically rare. We conclude that classical novae with m_R < 12 and within ~8 kpc are likely to be discovered in gamma-rays using the Fermi LAT.Comment: Accepted by MNRAS, 10 pages, 7 figure

    High-Temperature Processing of Solids Through Solar Nebular Bow Shocks: 3D Radiation Hydrodynamics Simulations with Particles

    Full text link
    A fundamental, unsolved problem in Solar System formation is explaining the melting and crystallization of chondrules found in chondritic meteorites. Theoretical models of chondrule melting in nebular shocks has been shown to be consistent with many aspects of thermal histories inferred for chondrules from laboratory experiments; but, the mechanism driving these shocks is unknown. Planetesimals and planetary embryos on eccentric orbits can produce bow shocks as they move supersonically through the disk gas, and are one possible source of chondrule-melting shocks. We investigate chondrule formation in bow shocks around planetoids through 3D radiation hydrodynamics simulations. A new radiation transport algorithm that combines elements of flux-limited diffusion and Monte Carlo methods is used to capture the complexity of radiative transport around bow shocks. An equation of state that includes the rotational, vibrational, and dissociation modes of H2_2 is also used. Solids are followed directly in the simulations and their thermal histories are recorded. Adiabatic expansion creates rapid cooling of the gas, and tail shocks behind the embryo can cause secondary heating events. Radiative transport is efficient, and bow shocks around planetoids can have luminosities ∼\simfew×10−8\times10^{-8} L⊙_{\odot}. While barred and radial chondrule textures could be produced in the radiative shocks explored here, porphyritic chondrules may only be possible in the adiabatic limit. We present a series of predicted cooling curves that merit investigation in laboratory experiments to determine whether the solids produced by bow shocks are represented in the meteoritic record by chondrules or other solids.Comment: Accepted for publication in ApJ. Images have been resized to conform to arXiv limits, but are all readable upon adjusting the zoom. Changes from v1: Corrected typos discovered in proofs. Most changes are in the appendi

    Wave Profile for Current Bearing Antiforce Waves

    Get PDF
    For fluid dynamical analysis of breakdown waves, we employ a one-dimensional, three-component (electrons, ions and neutral particles) fluid model to describe a steady-state, ionizing wave propagating counter to strong electric fields. The electron gas temperature and therefore the electron fluid pressure is assumed to be large enough to sustain the wave motion down the discharge tube. Such waves are referred to as antiforce waves. The complete set of equations describing such waves consists of the equations of conservation of mass, momentum and energy coupled with Poisson’s equation. Inclusion of current behind the wave front alters the set of electron fluid dynamical equations and also the boundary condition on electron temperature. For a range of experimentally observed current values, using the modified boundary condition on electron temperature, we have been able to integrate our modified set of electron fluid dynamical equations through the Debye layer. Our solutions meet the expected boundary conditions at the trailing edge of the wave. We present the wave profile for electric field, electron velocity, electron number density and electron temperature within the Debye layer of the wave

    Ion yields and erosion rates for Si1−xGex(0x1) ultralow energy O2+ secondary ion mass spectrometry in the energy range of 0.25–1 keV

    Get PDF
    We report the SIMS parameters required for the quantitative analysis of Si1−xGex across the range of 0 ≤ x ≤ 1 when using low energy O2+ primary ions at normal incidence. These include the silicon and germanium secondary ion yield [i.e., the measured ion signal (ions/s)] and erosion rate [i.e., the speed at which the material sputters (nm/min)] as a function of x. We show that the ratio Rx of erosion rates, Si1−xGex/Si, at a given x is almost independent of beam energy, implying that the properties of the altered layer are dominated by the interaction of oxygen with silicon. Rx shows an exponential dependence on x. Unsurprisingly, the silicon and germanium secondary ion yields are found to depart somewhat from proportionality to (1−x) and x, respectively, although an approximate linear relationship could be used for quantification across around 30% of the range of x (i.e., a reference material containing Ge fraction x would give reasonably accurate quantification across the range of ±0.15x). Direct comparison of the useful (ion) yields [i.e., the ratio of ion yield to the total number of atoms sputtered for a particular species (ions/atom)] and the sputter yields [i.e., the total number of atoms sputtered per incident primary ion (atoms/ions)] reveals a moderate matrix effect where the former decrease monotonically with increasing x except at the lowest beam energy investigated (250 eV). Here, the useful yield of Ge is found to be invariant with x. At 250 eV, the germanium ion and sputter yields are proportional to x for all x

    Technology benefits and ground test facilities for high-speed civil transport development

    Get PDF
    The advanced technology base necessary for successful twenty-first century High-Speed Civil Transport (HSCT) aircraft will require extensive ground testing in aerodynamics, propulsion, acoustics, structures, materials, and other disciplines. This paper analyzes the benefits of advanced technology application to HSCT concepts, addresses the adequacy of existing groundbased test facilities, and explores the need for new facilities required to support HSCT development. A substantial amount of HSCT-related ground testing can be accomplished in existing facilities. The HSCT development effort could also benefit significantly from some new facilities initially conceived for testing in other aeronautical research areas. A new structures testing facility is identified as critically needed to insure timely technology maturation
    • …
    corecore